

High DR ADC for LHC

Sarthak Kalani

Last updated: 03/31/17

Previously, with autoselect:

Auto select means verilogA logic block determines whether to choose
 1x gain or 4x gain, based on input.

Current status, with autoselect:

Auto select means verilogA logic block determines whether to choose
 1x gain or 4x gain, based on input.

Why autoselect was not working?

- Parasitic Cap at virtual ground node gets charged and affects output by the same amount (irrespective of gain)
- When samples are combined, if 1x samples are offset by k_{1x}, then 4x samples are offset by $k_{1x}/4$
- This limits max SNDR achieved

After stage 3:

$$V_{OUT} = Asin(\omega t) + k. C_X. A. \omega. cos(\omega t). \Delta t$$
 for gain of 1x &

$$V_{OUT} = 4Asin(\omega t) + k. C_X. A. \omega. cos(\omega t). \Delta t$$

Proposed solution: Introduce ASD clock

• Autozero slope distortion (ASD) clock discharges $\boldsymbol{C}_{\boldsymbol{X}}$ before hold clock starts.

Result: Good SNDR for autoselect!

Clock waveforms

Clock waveforms

Enough non overlap margins available

Test Strategy

- SAR only:
 - DRE clock disabled
 - DRE bias disabled
 - SAR input from outside
 - Exact power number not needed
- DRE only:
 - ADC clock disabled
 - · ADC bias disabled
 - DRE output taken out
 - SAR power, negligible if SAR clock is disabled
- Both SAR and DRE:
 - The clocks to both the blocks enabled
 - Middle pins disabled
 - DRE output -> SAR -> Serializer

DRE

Test

Next steps and Timeline

- Start layout
- Integrate scan chain
- Connect with 12-bit ADC.

- If time permits:
 - Low frequency T&H
 - Implement calibration scheme in Matlab

S.No.	Item	Complete by
1	Layout of individual blocks	Apr 5 th , 2017
2	Top level routing, pad connections	Apr 13 th , 2017
3	Integration with SAR-ADC	Apr 20 th , 2017
4	PEX, functionality test	Apr 23 rd , 2017

Backup Slides

PCB level schematic

Sampling Amplifier (SA) based DRE

Small input: 4x gain

Large input: 1x gain

SA-DRE timing diagram

Auto select timing diagram

- Vin = 400mV
- Autoselect enabled

Auto select timing diagram

- \cdot Vin = 400mV,
- Autoselect enabled

Manual select timing diagram

- Vin = 400mV,
- Manselect enabled
- Branch 1x selected

Sim Results@ 5MHz Input, 40MSPS

- 1.6V_{PP} differential input provided, 1x gain selected manually.
 - Similar results obtained for using 4x gain at maximum value.
- Simulations contain:
 - Transistor level transient simulation
 - Transient noise enabled
 - Input resistance of 10Ω . Bond wires not added yet.
- Tt, ff, ss, sf and fs corners simulated for 0°C and 50°C
 - All results better than 68.7dB SNDR
 - Bias currents not adjusted yet to equalize power consumption.

Corner	SNR (dB)	SNDR (dB)	Current (mA)	Vout _{pp} (diff) (V)
tt 0	73.1	70.58	13.83	1.6
tt 50	72.38	68.7	14.6	1.6
ss0	72.33	70.7	11.96	1.6
ff 50	71.77	69.27	20.16	1.6

Current Status: With ManSel: ss0

• Manual select means either one of 1x gain or 4x gain is selected for the complete experiment .

Channel area: 500 μm x 200 μm, Active area: 500 μm x 350 μm

Dual gain as DRE

Switching selection scheme

(contd.)


```
Timing
 → S => 1 x & 4 x Sample
    Hadr => Decide 1x or 4x
- H = Either Sel Ix or Sel 4x
           becomes 1.
      Selection process:
 - > H=> Brecharge (P) En4x latched node
     ( output of domino latch)
-> S => Latch active, varytime En4x cont.
        is O(zero), domino trips, outputo
-oHadr > Transfer Latch value to make
     ether sel 1x active on Sel 4x active
- 14 => cycle repeats
- During S, sel 1x & sel 4x are O (zero)
```

Switching selection scheme (contd.)

